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ABSTRACT

Detection and neutralization of surface-laid and buried landmines has been a slow and dangerous endeavor for military -
forces and humanitarian organizations throughout the world. In an effort to make the process faster and safer, scientists
have begun to exploit the ever-evolving passive electro-optical realm, both from a broadband perspective and a multi or
hyperspectral perspective. Carried with this exploitation is the development of mine detection algorithms that take
advantage of spectral features exhibited by mine targets, only available in a multi or hyperspectral data set. Difficulty in
algorithm development arises from a lack of robust data, which is needed to appropriately test the validity of an
algorithm’s results. This paper discusses the development of synthetic data using the Digital Imaging and Remote
Sensing Image Generation (DIRSIG) model. A synthetic landmine scene has been modeled after data collected on the
US Army’s Yuma Proving Grounds by the University of Hawaii’s Airborne Hyperspectral Imager (AHI). The synthetic
data has been created and validated to represent the surrogate minefield thermally, spatially, spectrally, and temporally
over the 7.9 to 11.5 micron region using 70 bands of data. Validation of the scene has been accomplished by direct
comparison to the AHI truth data using qualitative band to band visual analysis, Rank Order Correlation comparison,
Principle Components dimensionality analysis, and an evaluation of the R(x) algorithm’s performance. This paper
discusses landmine detection phenomenology, describes the steps taken to build the scene, methods utilized to overcome
limitations of less than adequate ground truth, and compares the synthetic scene to truth data.

Keywords: DIRSIG, reststrahlen, hyperspectral image simulation, mine detection, long wave infrared

1. INTRODUCTION

Since World War II, the ability of an army to detect a minefield that lay in wait has literally meant the difference
between life and death. Not only does this apply to advancing forces during a conflict, but also to the residents of the
region after the conflict has ended. This introduces the concept of humanitarian demining, a process to ensure innocent
civilians are not seriously injured as a result of forgotten and undetectable minefields. As technology has advanced
through the decades, the ability to collect and exploit a wider range of data pertaining to landmines and minefields has
advanced as well. This has given scientists new abilities to attempt detection of mines and minefields. With a new
arsenal of information at the disposal of scientists, the development of new methods to detect mines has followed. From
simple metal detectors to the use of thermal imaging or ground penetrating radar, advances have taken place in the
countermining field at a quick pace. The challenge at the forefront of research is testing these various detection
techniques to quantify how well each performs or potentially, how well some perform in tandem.

The introduction of novel detection techniques into the countermining community has created a need for test
data that provides a safe environment for researchers, without the loss of critical information about a mine or a
minefield’s “signature”. By limiting this discussion of the countermining field to passive electro-optical detection
techniques, Synthetic Image Generation (SIG) may prove to be a viable solution to the problem at hand.

*The views expressed in this paper are those of the authors and do not reflect the official policy or position of the United
States Air Force, Department of Defense, or the U.S. Government
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Researchers developing anomaly or target detection algorithms for use on hyperspectral data sets or broadband
images, cannot afford to undertake huge experimental efforts to produce data spanning a multitude of imaging conditions
for evaluation of algorithm performance. It is simply too cost prohibitive and work intensive. Therefore, the need for
accurate, reproducible images or sets of data is paramount. SIG can accomplish this task. Specifically, the Digital
Imaging and Remote Sensing (DIRS) group’s Image Generation (DIRSIG) model can be used for this purpose. DIRSIG
is a first principles based physics model that produces high fidelity radiance images of a scene created by a user.". Using
DIRSIG to build synthetic images offers the algorithm developer total control and flexibility over the data produced.
Therefore, if DIRSIG accurately models the physical interactions between objects within the scene, algorithm developers
can use the flexibility of the scene generation process to evaluate algorithm performance in a seemingly endless set of
scenarios.

. The purpose of this project is to use DIRSIG to produce high-resolution images of a scene that contains surface-
laid and buried landmine signatures as well as applicable background objects and clutter. The scene can then be used by
algorithm developers as a “training ground” to test algorithm performance. Correctly modeling the physics behind
object interactions within the scene is of critical importance. If the underlying principles are correct, a scene with
accurate minefield signatures will be created, and mine detection or anomaly detection algorithms will perform equally
as well on synthetic and real-world data. Hopefully, by using robust data to train an algorithm or refine an algorithm, a
more robust algorithm will emerge.

The work discussed in this paper stems from a U.S. Army Multi-University Research Initiative (MURI)
sponsored by the Army Research Organization (ARO). Together with four other universities, RIT hopes to further the
understanding of the science behind today’s ever-growing landmine detection problem. :

The approach described in this effort deals not with the specifics of algorithm development, but the generation
of accurate synthetic data. A high-resolution scene has been developed and validated by comparing minefield and
background attributes of the synthetic scene to attributes of a known data set. A quantification of the differences
between the synthetic to the real has also been accomplished. The goal of this work is to provide a validated scene that
accurately represents landmine signatures to an ATR algorithm.

2. BACKGROUND

2.1. Landmine Signatures

A landmine signature refers to the presence of a localized difference between a landmine and its surroundings caused by
the landmine itself or the emplacement of the mine. This signature manifests itself differently in the visible or near
infrared portion of the electromagnetic spectrum as compared to MWIR or LWIR regions. As this work focuses on the
LWIR region for validation, the VIS/NIR region has not been emphasized. Signatures of both surface laid and buried
mines are presented as potential detection features utilized by a detection algorithm. As the DIRSIG scene focuses on
feeding algorithms, spectral signatures of landmines and their interaction with background objects are critically
important. Validation of the scene is focused on this area. : :

2.1.1. Surface Landmine Signatures

The signature produced by a surface laid mine is directly due to the size, shape, composite material makeup, and thermal
properties of the mine. These properties are inherently different than surrounding background objects such as soil, grass,
etc. When viewed in the thermal region, these property differences will produce an apparent temperature contrast at the
sensor. Algorithm developers use this contrast between the target mine and the background as a detection feature. To
effectively model this contrast, detailed information must be known about the physical properties and spectral properties
of the target mine as well as background objects. Additionally, potential false alarm targets will have similar, but
different physical and spectral properties, producing target-like thermal contrasts. The ability of an algorithm to reduce
false alarms depends on its ability to distinguish between subtle differences in thermal contrast, whether it is spectrally,
spatially, or a combination of the two. o ’

It is difficult to generally characterize the thermal contrast between a mine and the background, as mines come
in many different shapes, sizes and compositions. In addition, background variety can be seemingly endless to include
wet soil, dry soil, short grass, tall grass, sand, etc. According to Nivelle and Lhomme?, soil type can play an important
factor in the development of thermal contrast. They observed a contrast inversion when viewing a surface laid mine on
rocky soil compared to the same mine laid on a compost background, all other factors held constant. In the first case, the
. mine was observed to have a negative contrast and in the latter a positive contrast at that particular time of day.




Another important consideration is the diurnal nature of the thermal contrast. This phenomenon is dependent
on incident solar radiation as well as heat transfer due to conduction, convection, and radiation. Incident solar radiation
contributes to heating the mine and the background at different rates, depending on the thermal inertia of the mine and
the background, as well as the emissivity of the surfaces of each. Observed signatures are far from constant, varying
with atmospheric conditions. There are two noticeable crossover periods where the thermal contrast between the mine
and the background is null. In general, these periods occur just after sunrise and just after sunset, but are heavily
influenced by atmospheric conditions.®> Just after sunrise and assuming the mine in question heats or cools faster than
the background, solar loading has warmed the mine from a point where the mine is cooler than the background to a point
where the temperatures are equal. The mine should continue to heat faster than the background throughout the day,
assuming a constant solar load. After sunset, solar loading has ceased. The mine and the background begin to transfer
heat to the colder, nighttime sky. Again the mine will cool more rapidly than the background, reaching a point where
temperatures equal. From a detection standpoint, these times are not suitable, which presents a significant problem for
24-hour detection capabilities. However, this neutral contrast is only truly valid in one spectral band. Because of
emissivity variations between the target and background, contrast may persist in other bands.

2.1.2. Buried Landmine Signatures

A buried mine signature is different than that of a surface-laid mine in that the observable features are not of the mine
directly, but rather the impact the mine has on the background. The observed thermal signatures of buried landmines are
" an apparent temperature contrast between the surface temperature of the soil above the mine and the surface temperature
of the soil surrounding the mine. There are two commonly observed thermal effects, namely the surface effect and the
volume effect.* The surface effect is associated with the process of disturbing the soil directly above the mine during the
emplacement process. Disturbing the soil to emplace a mine causes a change in the density of the soil, such that it will
have a lower thermal conductivity when compared to the surrounding undisturbed soil.’> The lower thermal conductivity
leads to a noticeable thermal contrast between disturbed and undisturbed soil. The surface effect is generally applicable
to recently buried mines, as environmental conditions such as rain or wind, will degrade apparent temperature contrast.
These effects can last up to three weeks under the right conditions.* In observing the surface effect, a broadband infrared
sensor may prove to be the best approach, mimicking the common observation technique for observing apparent
temperature contrast of a surface-laid mine and its background.’ :

The volume effect deals with the presence of the thermal mass of a buried mine within the soil. It is observed
for as long as the mine is in the soil, but reduced depending on environmental and atmospheric conditions.* The soil
volume directly above the buried mine will not heat up or cool down at the same rate as the surrounding soil, due to the
influence of the thermal mass of the mine. The effect is more pronounced depending on mine burial depth. The deeper
the mine is buried, the smaller the apparent temperature contrast.’ This observable temperature contrast at the surface of
the soil follows a diurnal cycle similar to the diurnal cycle of a surface laid mine. It has been noted through previous
work that the variation in apparent temperature contrast of a buried landmine over the diurnal cycle is lower than that of
a surface laid mine.” Obviously the exact differences are influenced by mine type, burial depth, background type and
other atmospheric parameters.

The second part in understanding buried landmine signatures relates to the spectral structures of the soil
disturbed during the burial process and the undisturbed surrounding soil. Immediately after burial of a mine, the
disturbed soil will exhibit a localized texture difference capable of being observed by a broadband IR sensor or even in
the visible portion of the spectrum.” However, detection based on this feature alone can result in false alarms due to
naturally occurring texture differences. Additionally, changing environmental conditions such as heavy rainfall or
blowing wind will effectively eliminate any observable texture difference due to mine burial. The main theory behind
buried landmine detection due to spectral properties of soil depends on the differences in spectral structure between the
surface layer of soil and the subsurface soil.” Essentially, during the burial process the subsurface soil is churned,
resulting in some of the subsurface soil residing at the surface. A spectral difference can be observed between
subsurface soil and surface soil based on weathering effects on the surface soil and organic composition differences.
Over the MWIR and LWIR regions, soil will show spectral structure due to specific spectral features of the minerals
contained within.® Therefore, the simplest method of detection would be to observe a different spectral signature from -
the disturbed soil based solely on a change in mineral composition.

If the disturbed and undisturbed soils are of equal mineral content, all hope is not lost. A spectral feature
common to most soils is the silicate reststrahlen feature, which manifests itself in the 8.5 to 9.5 micron spectral window.?
This feature can be exploited to detect buried objects. Soil particle size plays an important role in determining an
observable emissivity difference in the reststrahlen bands between disturbed and undisturbed soil. Before soil




disturbance occurs, the subsurface soil layer is composed of a mixture of larger and smaller particles. The surface layer,
having been exposed to wind, rain, and other atmospheric effects, is composed of only large particles. It has been shown
that a higher emissivity value is observed for the subsurface soil composition, i.e. the disturbed soil, in the reststrahlen
bands compared to undisturbed soil.” The spectral difference between untouched soil and soil that has been disturbed
during the landmine burial process is the key feature exploited by spectrally based mine detection algorithms.

3. SCENE MODELING

To synthetically represent a minefield with the spectral and spatial complexity of field collected data, a robust set of
fundamental object and material parameters must be incorporated. If not, the simulation will fail to adequately represent
real world image data, ultimately leading to unrealistic algorithm performance. Hence the modeler’s creed: garbage in
equals garbage out. Unlike previous modeling work’® dealing with complex object and background interactions in the
reflective region of the spectrum, this paper addresses the unique and somewhat more complex issues encountered while
modeling in the LWIR region of the spectrum. This paper also addresses novel modeling techniques that have been
incorporated to overcome limitations of less than adequate ground truth, a prevalent occurrence throughout the creation
of this scene. With that said, the goal of the project was not to exactly replicate the truth data, but to develop solutions to
complex modeling challenges as well as provide statistically realistic data to mine detection algorithms with the purpose
of furthering algorithm development. Exact one-to-one scene correlation was not required or expected. Four versions of
the scene have been rendered, one from an altitude of 700 feet AGL during the evening (approximately 1700hrs), one
from an altitude of 1400 feet AGL during the evening, one from an altitude of 700 feet during the middle of the day
(approximately 1300hrs, referred to as ‘noon’), and one from an altitude of 1400 feet during the middle of the day.
These renderings coincide with data collections over a simulated minefield at the US Army’s Yuma Proving Grounds in
Arizona, USA by the University of Hawaii’s Airborne Hyperspectral Imager (AHI). The AHI data consisted of
calibrated radiance images covering the LWIR from approximately 7.5 to 11.5um, utilizing 70 spectral bands. As will
be discussed in further detail, this data was invaluable during the scene creation process.

3.1. Scene Geometry

From the available ground truth, the scene’s background objects and target spatial dimensions were estimated then
created in facetized model form using a computer aided design (CAD) software package (see figures 1-3). Six (6)
objects in all were built and each placed in the scene corresponding to surveyed target location coordinates. These
included simulant M19 landmines, simulant M20 landmines, Top Hat fiducial markers, EO/IR calibration panels, large
desert bushes and small desert bushes.

Fig:ilrf 1. A facetized M19 landmine Figure 2. A facetized M20 landmine model.  Figure 3. A facetized desert bush model.
model.

In order to adequately represent small-scale surface elevation features (bumps in the ground), a new technique
was employed, as standard scene creation methods would not provide the necessary degree of resolution. For this scene
we used a bump-map, which is based off standard mapping routines'® but used to alter the direction of the surface
normal vector of a facetized object (see Figure 4). The amount and direction of surface normal deflection is based upon
the ground sample distance and the gradient of gray level values across the mapping image used in the process. The
steeper the gradient, the higher the angle of deflection applied to the surface normal. This produces the appearance of a
roughened or bumpy surface without the need to explicitly build surface variation into the CAD model. In this case, a
bump-map was applied to soil areas in the scene to give it a natural and realistic look. This process also affects the
amount of solar loading onto the object, where the surface variation will incorporate changing angular effects across the
surface of an object. This produces changes in temperature across an object’s surface and leads to temperature variation
across the scene.




1-D Surface normal deflection
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Figure 4. An example of surface normal deflection to produce
bumps in a flat surface.

Figure 5. A buried mine area's material map.

To facilitate the creation of buried mine areas, a material map was introduced that was sufficiently large enough to
completely cover a 150 by 150 meter region using a ground sample distance of 0.025 meters. Within the map, small
regions were inserted corresponding to the exact spatial location of each surveyed area, using two (2) gray levels to
represent disturbed soil (see Figure 5). Gray regions represent disturbed soil that is located directly above the buried
mine and black regions represent surrounding disturbed soil. Any additional white pixels represent undisturbed soil.

3.2. Sensor Modeling

In addition to standard sensor modeling within DIRSIG', a unique approach was taken to include realistic spectrally
correlated noise derived from truth imagery into the final scene renderings. Limited information pertaining to the noise
characteristics of the AHI sensor was known, so this method of creating realistic noise was the only way to add this
variability into the scene. The process is in two parts. Step 1 derives an estimated dark scan from truth data and step 2
uses the statistics from the estimated dark scan to produce synthetic noise cubes that can be added on a band by band
basis to the rendered DIRSIG imagery. The flow for this process is presented in Figures 6 and 7.

Step 1: Estimate Correlated Noise Step 2: Create synthetic correlated noise
o Result is Dark Apply Principle
region from image Scan Estimate |™=%| Components
(zero mean) Transform
Apply forward *

Determine

Use ENVI option
to sstimate noise MNF Transform
Yy

Select bands X Sta:fd :;ddf ﬁ;l:gon
containing image Eigenvalues > 2.0
data ‘
L2 Dimensions must Generate Gaussian
Apply inverse be the same as random noise with
MNF transform on : DIRSIG images equal std dev
spectral subset i
v
Subtract inversed Result is Dark Apply Inverse PC Add resulting
datasetfrom [—»| ScanEstimate | transform on — lated noise to
original {zero mean) Gaussian noise cube DIRSIG imagery
Figure 6. The noise development process - Step 1. Figure 7. The noise development process - Step 2.

Initially, a materially uniform region is selected for processing from the truth data. Next, a standard Minimum Noise
Fraction (MNF) data transformation is employed using ENVI!!, ENVI has a built-in function to estimate noise statistics
from the data at hand through a shift-difference method. This method differences neighboring pixels directly above and
to the right of the base pixel, then averages the values to obtain the base pixel’s noise value. This process derives an
estimate of scene noise for use in the MNF transform. The resulting “image” bands of data are segmented from the
“noise” bands by selecting only the bands with eigenvalues greater than 2.0, as eigenvalues near 1.0 indicate pure noise.
The noiseless bands are inversely transformed back to the image data space and then subtracted from the original
uniform region data to obtain an estimated dark scan for the imaging system. The resulting noise data is inherently
spectrally correlated with a mean value of zero. This noise cannot be directly added to rendered DIRSIG imagery
because the noise image does not necessarily match the rendering’s exact image dimensions. To rectify this and to retain
the inherent spectral correlation, the Step 2 process is employed. A standard Principle Components (PC) transformation
is applied to the estimated dark scan, which de-correlates the data. The standard deviation for each transformed band of
data is determined and then used to generate synthetic Gaussian distributed noise images having equivalent image
dimensions as the DIRSIG rendering. An inverse PC transformation is applied to the synthetic noise cube, using the
transformation statistics from the estimated dark scan’s forward transform. This step correlates the synthetic noise such
that it is nearly identical to the input correlation. The synthetic, correlated noise is then directly added to the DIRSIG
rendering on a band-by-band basis.  Pictorial examples of the resulting covariance matrix compared to the input
covariance matrix of the estimated dark scan are presented in figures 8 and 9.




- baseline undisturbed soil’s gray level value in the base material map.
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Figure 8. (A) E700 AHI derived noise covariance, (B) E700 Figure 9. (A) N700 AHI derived noise covariance, (B) N700
synthetic noise covariance. synthetic noise covariance.

3.3. Thermal material parameters

The DIRSIG material file contains all the needed thermodynamic information about a single material for DIRSIG’s
thermal model to develop a diurnal temperature prediction. These parameters include fundamental material properties
such as specific heat, thermal conductivity, mass density, thickness, and broadband emissivity values for the visible
portion and thermal portion of the spectrum, as well as modeling parameters such as specularity or exposed area. The
basic parameters for all materials within the scene were initially estimated from previously validated data at Rochester
Institute of Technology or from textbook material parameters, due to a lack of supporting ground truth. Refinements to
the initial values were made throughout the scene creation process in order to more closely align final synthetic radiance
curves to truth radiance curves.

Adequately representing thermal clutter and thermal variation within a material played a significant role in
developing the synthetic scene. In order to ensure anomaly or target detection algorithms perform consistently between
truth and synthetic data, the issue of thermal variation had to be addressed. Previous hyperspectral modeling with focus
on algorithmic development® addressed issues encountered in the visible portion of the spectrum. This current work is
one of the first attempts to address the issues of thermal clutter and thermal variation conducted by the DIRS group.

After initial evaluation of the scene using the baseline material mapping methodology, it was determined that
additional areas of compacted soil were needed to add additional thermal variation and clutter across the landscape. To
add these areas of soil, two additional gray level values were added to the base material map to represent medium-
compact and highly compact soil (see figure 10). This facilitated some thermal variability, but not to the degree needed.
To rectify the situation, the baseline undisturbed soil (all white space in figure 10) was split into three variants. The first
variant was the baseline undisturbed soil and the second was a “low temperature” version created by reducing the
broadband visible emissivity value of the baseline by 0.03 and increasing the broadband thermal emissivity value by
0.03. The third variant was a “high temperature” version created by increasing the broadband visible emissivity value of
the baseline by 0.03 and decreasing the broadband thermal emissivity value by 0.03. In order to incorporate these new
materials, the material map was again altered. A three level threshold was applied to a variable gray level image,
creating equal amounts of each undisturbed soil variant. The resulting image (see figure 11) was used to replace the

Figure 10. The DIRSIG material map with gray areas of Figure 11. A variable image with a three-level threshold
added thermal clutter. Note the rows of buried mines. applied.




By adding new materials to the scene, additional thermal clutter and variation were incorporated. Prior to the creation of
these materials, the synthetic scene showed thermal variation of approximately 0.1°C in the evening, 700-foot rendering
and approximately 2.5°C in the noon, 700-foot rendering, due only to surface geometric effects introduced through bump
mapping. After the incorporation of the new material map, thermal variation in the evening, 700-foot rendering was
approximately 0.3°C and approximately 3.5°C in the noon, 700-foot rendering. This compares to thermal variation in the
truth data of approximately 0.4°C in the evening, 700-foot data and approximately 3.0°C in the noon, 700-foot data. This
represents a significant improvement in the thermal modeling process.

3.4. Optical material parameters

Valid emissivity curves for each material within the scene are absolutely essential for successful reproduction of
observed material features. In addition, key buried mine detection features reside primarily between differences in
emissivity curves, so valid curves become even more important. Unfortunately, measured emissivity curves for
materials within the scene were unavailable, leaving scene builders with quite the dilemma. To rectify this situation, two
options existed. The first to develop or research a method to extract emissivity curves from the truth data or the second
to utilize emissivity curves of similar, but not equivalent, materials. To facilitate better comparison between material
radiance curves and the evaluation of the modeling process, the former method was selected. Utilizing emissivity curves
gathered from other sources may have been sufficient for man-made materials such as surface mines, fiducial markers,
or calibration panels, however soil composition would have been extremely difficult to match. The selection of any
externally gathered emissivity curve would have been more of a guess than a scientific selection process. To ensure a
sense of uniformity in selecting emissivity curves, the decision was made to use a single technique for all materials
rather than a mix of two or more.

Deriving emissivity curves from the truth data was a unique process in itself due to the spectral region being
modeled. The process entails determining atmospheric components of the sensor reaching radiance then applying a
blackbody curve fit technique to radiance curves that have been atmospherically calibrated. To determine values for the
average atmospheric transmission and average upwelled radiance across the scene, a multiple altitude calibration
method'? was employed. The limited amount of truth data was nearly perfect for the use of this technique. Two of the
AHI calibrated radiance images were used, specifically both evening shots at altitudes of 700 and 1400 feet respectively.
These data sets were obtained over the course of approximately 14 minutes and covered the same general area on the
ground. Given the low nature of the flights and small sensor field of view, angular correction for off-nadir imaging was
assumed to be unneeded. In addition to the reasons stated previously, these sets of data were chosen primarily because
target pixels were discernable in both sets of data and these data sets were imaged at a time of day that had low thermal
variability, with no issues arising from solar loading, since the sun had already set. Most observed radiance variability
from a material at this time of day was due to inherent differences in emissivity. The result of this process produced
average scene atmospheric transmission and upwelled radiance values across the spectral region sensed by the AHI
system, shown in figure 12. Pixels corresponding to specific materials were located in the truth imagery and
interrogated for their radiance curve. The radiance curve was atmospherically corrected using the previously discussed
values, and then became the input for the blackbody curve fit procedure, namely the Planck Curve Fit'2,

Derived Atmospheric Transmission and Upwelled Average Derived Emissivity Curves
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Fig}lre 12. Average atmospheric transmission and upwelled Figure 13. Average derived emissivity curves for disturbed
radiance curves across the AHI truth scene at 700 feet. and undisturbed soil.

The Planck Curve Fit is a temperature-emissivity separation technique, which involves fitting a target’s radiance curve to
Planck’s blackbody radiation curve generated at the highest temperature that will keep the target’s emissivity from
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exceeding unity. This is an iterative process where two initial high and low temperature bounds are selected and then a
blackbody radiance curve corresponding to the mid-point of the temperature range is generated and compared to the
target radiance curve. This midpoint temperature then replaces either the upper or lower temperature bound and the
process repeats. Iterations continue until the upper and lower bounds are separated by a defined value, e.g. 0.5K or
similar range. This method is quick and easy to implement, but hinges on at least one point along the target’s emissivity
curve approaching unity. For the case of soil emissivity over the LWIR spectral region this assumption holds true,
however this does not hold true for manmade materials such as the fiducial markers in the scene. Lacking alternative
data, this process was implemented to derive families of emissivity curves for all discernable materials within the scene.
Families of curves meaning a number of derived curves that encompass the range of spectral variation for a given
material. As an example, twenty curves were extracted to represent disturbed soil as a whole. The results of the process
can be seen in figure 13.

The application of emissivity curves to material types was accomplished through the use of a texture map', by
which emissivity variation within a material was introduced into the scene. Determining a good gray level image as the
basis for the application of texture was a difficult process. When texturing in the reflective region, one only needs to
worry about emissivity differences when attempting to spatially match observed brightness variability across a material.
Typically, an overhead grayscale image of the true scene is used to drive the texture process, ultimately determining how
well a rendered image looks. In the LWIR, the previous issue is complicated by temperature variability as well. In this
work, matters are complicated even further because there was no available overhead imagery that was suitable for
texturing. Therefore, any input texture image would be nothing more than an educated guess at what the true spatial
distribution of material emissivity curves truly is. A generic texture image was selected that attempted to match the
spatial distribution of emissivity values observed in the evening truth imagery. For the same reason that the evening data
was selected to derive the emissivity curves, they were also chosen for attempting to match texture images. The thought
being that radiance variability is driven predominantly by emissivity differences due to low temperature variability at
that particular time of day. The problem of texture application in the thermal infrared is an area that is quite ripe for
further research. Hopefully this modeling effort can provide a starting point for future work in LWIR texturing.

4. RESULTS

As previously mentioned, four data sets were created for qualitative and quantitative evaluation to truth data. It would
be impossible to present the details of every evaluation, so the following results address the most relevant points. The
metrics used to evaluate the scene range from the purely qualitative to purely quantitative. Both are necessary for a
thorough discussion of the pros and cons of the current scene creation process.

4.1. Visual image comparison

The first approach to evaluating the goodness of fit between synthetic and truth data is to simply view the rendering and
truth imagery side by side. A simplistic qualitative comparison is the best method available for noticing major global
differences between the two. Because the data is hyperspectral, only two of the 70 available bands are shown in the
comparison, namely bands 25 and 65. These bands lie at approximately 9.16um and 11.22um respectively, the first
within the reststrahlen band feature and the second outside of the feature. These are presented in figures 14-17, where
figures 14 and 15 address low altitude, evening versions of the scene, and figures 16 and 17 address midday imaging
conditions. Evening data shows appropriate levels of contrast between target areas (brighter areas in vertical rows) and
background areas combined with realistic levels of clutter. In addition, target areas diminish when viewing the scene off
the reststrahlen band feature, as expected. Daytime data shows the difficulty in adequately matching spatial temperature
variation throughout the scene. Especially noticeable in figure 17, background brightness variation is spatially on a’
wider scale in the rendering, due to the spatial distribution in the material map. As discussed previously, actual variation
in temperature values is appropriate between the truth and synthetic data, however the actual spatial distribution of these
values is a difficult process to perfect. This is the overarching problem encountered with adding temperature variation
across a material in the manner previously described. Also, in figures 14 and 15, the time of day the imagery was
collected or rendered allows for a good comparison of the emissivity texturing process. Again, without overhead
imagery of the scene the rendering will not exactly match the truth, nor was this the goal. However, the generic texture
image must be reasonable to produce a viable scene. Since temperature variation is at a minimum at this time, radiance
variation is due mostly to emissivity differences. This qualitative comparison concludes that the general texture image
approximates the truth imagery quite sufficiently and is a viable modeling option. Additionally, the structured noise, or
vertical striping as seen in the AHI data, was not modeled in the synthetic data. Any attempt to characterize this band




specific and spatially varying noise would require detailed knowledge of the sensor’s focal plane at the time of imaging,
knowledge that was unavailable for this work.

Figure 14. Both images are evening at 700 ft., (L) Band 25, Figure 15. Both images are evening at 700 ft., (L) Band 65,
AHI truth data image; (R) Band 25, DIRSIG rendering.
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Figure 16. Both images are noon at 700 ft., (L) Band 65, AHI truth Figure 17. Both images are noon at 700 ft., (L) Band 65, AHI
data image; (R) Band 65, DIRSIG rendering. truth data image; (R) Band 65, DIRSIG rendering.

4.2. Rank order correlation

One of the most effective evaluations conducted was an evaluation of rank order correlation' amongst materials within
the scene over each band of data. The scene is to be processed by algorithms, keying off likely contrast features in the
minefield created by either a thermal difference or emissivity difference. This difference in brightness value is the
quantity that is of most importance to correctly model. An attempt to strictly quantify the mean level error between truth
and synthetic data will not provide an accurate assessment of how well the synthetic data approximates the truth to an
algorithm. As an example, if RMS error were a measure used for evaluation, a constant gain or bias error between truth
and synthetic data would yield poor results. If the contrast between scene materials were the same, any global gain or
bias would be insignificant to an algorithm. Rank order correlation provides an avenue to evaluate the in-scene contrast
while removing error contributions from less significant sources. In order to evaluate the relative brightness of each
scene compared to truth, six materials were selected for comparison. In each band of each scene, these six materials
were ranked brightest to darkest, then evaluated using the Spearman rank order correlation'®. The metric values range
from —1.0 to 1.0 with 1.0 being perfect correlation, the optimum result for this evaluation. Each band of data carries a
unique correlation value, all of which were averaged to produce a single value representative of the entire hyperspectral
scene. These results are shown in Table 1. The results for this portion of the evaluation indicate that brightness contrast
between materials can be faithfully reproduced using the DIRSIG model. Minimum values listed for the evening
renderings are a singular occurrence, observed in the data’s first spectral band, lying on the edge of a water vapor
absorption feature. The low values are primarily due to the Planck curve fit procedure, as each material’s emissivity
approaches unity in the initial spectral band. At this time of day where thermal differences are at a low, average radiance




values were very tightly grouped, resulting in a relatively arbitrary brightness ranking. Minimum values in the midday
data also arise due to a very tight grouping of radiance values for three different scene materials. Minimum values tend
to predict issues with the emissivity derivation process or represent situations where the metric struggles to appropriately
rank materials. In addition to overall scene values, each material was evaluated, ranking the material’s radiance value in
each spectral band. A rank order correlation value was determined for each material, in each scene and finally averaged
for an overall material “score”. This evaluation tends to measure spectral correlation determined by atmospheric
constituents and emissivity curves. Essentially, this metric evaluates how well the atmosphere matches the truth
atmosphere and how well the derived emissivity curves match the truth. Results for this evaluation are presented in
Table 2. With the exception of the Top Hat fiducial markers, all individual DIRSIG materials show strong correlation
with the truth. Strong correlation across all but one material implies that the atmosphere is modeled quite well. It also
points to the Top Hat’s derived emissivity curve as the flaw in the process. This was not unexpected, since the Planck
curve fit used to separate temperature from emissivity is predicated on the target’s emissivity approaching unity, which
is typically not the case for man-made materials such as the Top Hat. Taking this one step further, the data implies that
the emissivity derivation process tends to break down for non-Lambertian materials. Soils and vegetation, being
essentially Lambertian, have distinctly high correlation values. The Top Hat fiducials and EO/IR panels are not as
Lambertian. Particularly, the Top Hat fiducials are quite specular, being made from a polished metal substance.

Overall Scene Rank Order Correlation (band average)

Mean Max Min Standard Deviation
E700 0.93 1.00 0.43 0.09
E1400 0.94 1.00 0.40 0.09
N700 0.86 1.00 0.60 0.09
N1400 0.93 1.00 0.60 0.10

Table 1. Overall scene rank order correlation statistics, comparing DIRSIG imagery to truth imagery.

Material Rank Order Correlation

Undisturbed Soil { Disturbed Soil | EQ/IR Panel | Vegetation | Top Hat Fiducial
E700 0.96 0.98 0.91 0.94 0.65
E1400 0.95 0.97 0.87 0.92 0.77
N700 0.85 0.96 0.85 0.96 0.37
N1400 0.86 0.91 0.82 0.94 0.43
AVG Value 0.91 0.95 0.86 0.94 0.55

Table 2. Individual material rank order correlation values, comparing DIRSIG imagery to truth imagery.

4.3. Dimensionality analysis

One of the simplest, but most important analyses is an evaluation of dimensionality. The project goal is a good overall
statistical correlation between synthetic and truth data. The amount of inherent variability in the data directly compares
to the statistical fit between the two. To evaluate this, a standard Principle Components transformation was applied to
each of the truth and rendered data sets. The Principle Components transformation'? is used to decorrelate and maximize
data variability in multi or hyperspectral data sets. This is accomplished by projecting the original multi-band data onto
a new set of orthogonal axes defined by the eigenvectors of the data set. The resulting PC data bands will be ordered
such that the first PC band contains the largest percentage of data variance, the second PC band contains the second
largest percentage of data variance, and so on. If the rendering is a good fit to the truth, the resulting amount of variance
in each PC band should be similar between the real and synthetic data, If the synthetic captures most of the data
variance in one or two bands, where the truth spreads the variance over six to seven bands, we can conclude that the
synthetic is far less statistically complex and will not approximate the scene appropriately to an algorithm. The results
of the analysis are shown in Table 3, and are very encouraging. The evening data compare extremely well, even
showing slightly more spread in the synthetic variability. The DIRSIG midday data is not as variable as one would
hope. This seems to be due to issues arising with the addition of solar loading in the scene. As mentioned previously,
the sun had set at the time of the evening renderings, eliminating solar issues from the data. In the midday data, the
added complexity of the sun adds to the thermal variability in the soils. The solution to lacking thermal variability was
to increase the number of slightly different soil materials. While this did a reasonable job of approximating the thermal
variability, the complexity of the issue may not have been fully replicated. These results point to the need for additional
flexibility in the DIRSIG model when adding temperature variation, an issue currently under investigation.
Additionally, some of the reduction in variability in the noontime data may result from complex surface variation not
fully captured by the scene’s bump map. In terms of scene building, this could be eliminated with a detailed knowledge
of the elevation changes across the scene, incorporated into a Digital Elevation Map or DEM. A DEM combined with a




bump map would produce additional surface variability. In this case there was no prior knowledge of the surface

variation across the truth scene, so a DEM was unavailable.

Percentage of Variance

E700 E1400 N700 N1400

PCBand| AHI DIRSIG| AH!I DIRSIG] AHI DIRSIG| AHI DIRSIG
85.80% 79.74%|76.28% 72.99%|84.72% 93.86%|84.53% 96.11%
8.64% 14.32%|13.83% 15.75%| 13.36% 5.15% |13.38% 3.11%
1.12% 1.45% | 1.92% 1.28% | 0.71% 0.44% | 0.66% 0.25%
0.53% 0.60% | 0.66% 0.75% | 0.29% 0.21% | 0.35% 0.12%
0.33% 0.22% | 0.55% 0.68% | 0.23% 0.02% | 0.22% 0.02%
0.16% 0.21% | 0.27% 0.64% | 0.07% 0.02% | 0.06% 0.02%
0.14% 0.19% | 0.24% 0.49% | 0.04% 0.01% | 0.05% 0.02%
0.12% 0.17% } 0.23% 0.46% | 0.03% 0.01% | 0.03%  0.02%
0.12% 0.17% | 0.23% 0.44% | 0.03% 0.01% | 0.03% 0.02%
10 0.11% 0.17% | 0.22% 0.41% | 0.02% 0.01% | 0.02% 0.02%

Table 3. A comparison of data variance between the AHI truth data and the DIRSIG synthetic data across all four data sets.
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4.4. Comparative algorithmic performance
The final evaluation is a comparison between an anomaly detection algorithm’s performance on the truth scene and the
synthetic scene. Many “canned” anomaly detection algorithms exist today, but in an attempt to provide a more
strenuous test, the R(x) anomaly detection algorithm'®> was decided upon. This algorithm processes a multi or
hyperspectral data set spectrally and spatially over a user defined processing window size. This is unique in that
standard anomaly detection algorithms tend to process either spectrally or spatially, but not in a combined fashion. It is
important to note that this algorithm is not designed specifically to address the mine detection issue; so excellent mine
detection was not a requirement. The goal was to see if the algorithm would perform equally as well on both data sets,
whether that be good or bad. A generic processing window size of 21x21 pixels was used for all evaluations, with a
target spatial shape defined as a 5x5 square set of pixels for the 700 foot data and a 3x3 square set of pixels for the 1400
foot data. These dimensions were selected to tune the algorithm to the approximate spatial size of the buried mine areas
in the truth imagery. Comparison images of the midday, 700 foot results and the evening, 1400 foot results are presented
in figures 18 and 19. A 98% image data threshold has been applied, allowing a visual comparison.
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......

Figure 18. R(x) algorithm result images for (L) AHI truth data - - i

and (R) DIRSIG rendering (without added roll or roll Figure 19. R(x) algorithm result images for (L) AHI truth data

correction) for midday, 700 ft. and (R) DIRSIG rendering (without added roll or roll
correction) for evening, 1400 ft.

The result images are very encouraging. The number of false alarms is very significant in both the truth and synthetic
data. While the results are not identical, they show that spectral and spatial clutter has been created that can adequately
model the real world. The amount of clutter seen in the synthetic data, while appearing to be less than the truth, is of
lower concern from a modeling standpoint because additional clutter objects can easily be inserted. The fact that these
clutter objects approximate truth clutter quite well spatially and spectrally is the significant point. It was expected that




mined areas would be more noticeable in the synthetic data, purely due to the fact that it is modeled data, however some
of this can be explained. Buried mine areas were created to have a very similar circular shape, where true buried mine
areas are quite irregular. Adding more irregularity to these areas would have a dramatic effect in the algorithms ability
to detect. As mentioned before, the target’s spatial structure was input to the algorithm as a regular square of pixels,
which will more closely match the synthetic data than real world. From a scene building prospective, this scene more
closely represents the truth to a target detection algorithm than any other thermal scene built at the DIRS lab to date.
That being said, this scene is only the first step to exact statistical representation of the truth and will be improved upon.

5. CONCLUSION

This work has demonstrated that DIRSIG is capable of accurately modeling a representative LWIR scene complete with
spectrally and spatially varying clutter sources, even when lacking significant amounts of truth data. New techniques

- have been developed and used to assist the scene builder in deriving accurate input data for the model, such as synthetic
correlated noise generation and emissivity curve derivation. Moreover, this work has shown the need for further study in
the area of temperature variability modeling combined with emissivity texturing. Scene modeling is cyclical in nature; a
first version is created and evaluated, and then upgrades are determined and implemented. The new scene is rendered
and the process repeats. With each cycle, the scene gets closer and closer to the truth. While this may never be perfectly
attainable, striving to understand the error takes us a few steps closer to equality. The next phase of effort for this work
will be to investigate methods to incorporate suitable temperature variability as well as to vary the spatial dimensions
and locations of buried mine areas within the scene. The focus will be improving the scene so as to enhance the
development of mine detection algorithms.
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